• 0 Posts
  • 17 Comments
Joined 1 year ago
cake
Cake day: August 2nd, 2023

help-circle



  • sm1dger@lemmy.worldtoMicroblog Memes@lemmy.worldPSA.
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    1
    ·
    5 months ago

    I’m call BS. Titanium isn’t really very strong (about the same as copper when pure, while specialist Ti alloys are about halfway between aluminium and generic steel). People use titanium when they want something metal which is pretty strong but very lightweight. As an aside, it has pretty meh ductility for a metal and would make a poor bulletproof material, so David Guetta got that wrong too


  • The energy for lab grown meat has to come from somewhere - thermodynamics is always king. You can provide it via sugars/carbohydrates which the cells can motabolise, but you’ve got to put energy into making the sugar/carbs which is easiest by just growing some sugarcane/potatoes/etc. There’s more steps for meat vs plant and it’s very unlikely you can make 100 calories of lab meat with lower total system energy input than 100 calories of plant matter. (N.B., I’m a chemist, not a astronomical biologist, so if an expert refutes me and my assumptions, Place more trust in them)


  • I dont know this work, but have had a hand in some solar cell research (nanomaterials development), so can give a little context. This is a “one off” in so much as it will be centimeters sized lab based sample, although it has been repearedto verify. The current cost difference is astronomical versus mainstream (silicon) panels, but that’s typical of new discoveries. To be more exact, this is TRL 4 (technology readiness level 4) which is a scale that goes up to 9. Things only start getting cheap as you get towards the top. As for what the expected price of these materials would be, we don’t usually know for sure, although as this is a tandem cell it must be more expensive than mainstream as it literally builds a perovskite cell on top of a silicon one. They will never be used for mainstream - this is a specialist material.

    The perovskite itself might make it as a general use solar cell. They have good efficiencies and you don’t have to make pure silicon (which is a bitch) and can in theory make them cheap and easy. As for time frame, I’m a bit of a skeptic it will ever be really used as there are a couple of issues this tech needs to address before it’s viable (#1, they degrade in air and encapsulating them adds new issues) and we already build silicon factories so that is soooo cheap versus building new factories to make long-term-cheaper cells. Factories are expensive. But in theory, anyone could push it to the mainstream within a decade.