Scientists in California make a significant step in what could one day be an important solution to the global climate crisis, driven primarily by burning fossil fuels.
I wonder what sort of problems having near-unlimited energy at our disposal would bring. Like, light and noise pollution are already bad enough. But would people be even more careless with that? And if we manage to automate most things and energy isn’t an issue, how would we live and occupy ourselves? How would that change industries and the world? How would that change things like war and power struggles in general? What about science and electronics?
Thinking of the hypothetical scenario where in a short timeframe energy would become near unlimited and almost free:
On the positive side: with no energy limitations, Direct Air Capture technology could be scaled massively. That’s one really promising technology that can take carbon off the air and use it for other things (like sustainable air fuels) or removing it altogether.
Also this would accelerate the transition to electric cars and well, electric everything: why pay for fuel for your car, your stove or boiler, when they can be almost free? That has a potential for good effects on the environment too.
On the negative side: this opens the door for more, cheap transport. If people don’t have to pay for fuel, they’d be more willing to take the car everywhere. This would mean more roads, more infrastructure, more destruction of ecosystems, less space for pedestrians… A trend that is already too difficult to reverse in a world of expensive fuels.
In terms of economics, I could see this accelerating the gap between countries. Those who could benefit from semi-free energy first would have an immense competitive advantage and also lower their manufacturing costs, leaving worse-off countries in a position where they can’t compete because of technology nor because of cheap labour.
Honestly, we won’t likely see cheap energy in our lifetimes. A fusion powerplant could come online that is able to power the entire eastern seaboard of the US with some leftover for millionths of a cent per kW and we would still be getting charged just as much if not more for it. The general populace will never see the benefits of nearly infinite, nearly free power because the company that owns it will just see it as a higher profit margin. Sure, they may underbid fossil fuels or other renewables by just enough that they can’t operate, but it will still be orders of magnitude more than we should be charged. The only way the population sees the benefit is if the reactor is publicly owned and the government is prevented from converting it over to privatization because that has ever gone well for us.
I agree with you, prices will still be market driven. However I was replying to a comment about a hypothetical scenario, which I think is useful to explore however unlikely it might be.
Unlimited for our current needs or on a planetary scale, but nowhere near enough at the scale of a solar system of galaxy. I doubt it would be enough energy to for example open a wormhole or accelerate a spaceship to even 1/3 of light-speed. Not only is the amount important, but also the ability to sustain the output.
We’ll just be on the first rung of the Kardashev scale. Of 3. However, the jumps between the rungs are huge (logarithmic). Complete control of planet, star, galaxy.
I wonder what sort of problems having near-unlimited energy at our disposal would bring. Like, light and noise pollution are already bad enough. But would people be even more careless with that? And if we manage to automate most things and energy isn’t an issue, how would we live and occupy ourselves? How would that change industries and the world? How would that change things like war and power struggles in general? What about science and electronics?
It’s a bit concerning but also fascinating
Thinking of the hypothetical scenario where in a short timeframe energy would become near unlimited and almost free:
On the positive side: with no energy limitations, Direct Air Capture technology could be scaled massively. That’s one really promising technology that can take carbon off the air and use it for other things (like sustainable air fuels) or removing it altogether.
Also this would accelerate the transition to electric cars and well, electric everything: why pay for fuel for your car, your stove or boiler, when they can be almost free? That has a potential for good effects on the environment too.
On the negative side: this opens the door for more, cheap transport. If people don’t have to pay for fuel, they’d be more willing to take the car everywhere. This would mean more roads, more infrastructure, more destruction of ecosystems, less space for pedestrians… A trend that is already too difficult to reverse in a world of expensive fuels.
In terms of economics, I could see this accelerating the gap between countries. Those who could benefit from semi-free energy first would have an immense competitive advantage and also lower their manufacturing costs, leaving worse-off countries in a position where they can’t compete because of technology nor because of cheap labour.
Honestly, we won’t likely see cheap energy in our lifetimes. A fusion powerplant could come online that is able to power the entire eastern seaboard of the US with some leftover for millionths of a cent per kW and we would still be getting charged just as much if not more for it. The general populace will never see the benefits of nearly infinite, nearly free power because the company that owns it will just see it as a higher profit margin. Sure, they may underbid fossil fuels or other renewables by just enough that they can’t operate, but it will still be orders of magnitude more than we should be charged. The only way the population sees the benefit is if the reactor is publicly owned and the government is prevented from converting it over to privatization because that has ever gone well for us.
I agree with you, prices will still be market driven. However I was replying to a comment about a hypothetical scenario, which I think is useful to explore however unlikely it might be.
Unlimited for our current needs or on a planetary scale, but nowhere near enough at the scale of a solar system of galaxy. I doubt it would be enough energy to for example open a wormhole or accelerate a spaceship to even 1/3 of light-speed. Not only is the amount important, but also the ability to sustain the output.
We’ll just be on the first rung of the Kardashev scale. Of 3. However, the jumps between the rungs are huge (logarithmic). Complete control of planet, star, galaxy.
CC BY-NC-SA 4.0
What’s the alphanumeric sequence at the end of your comment?
It’s like a signature one would’ve used on the old BB forums. Added a link
CC BY-NC-SA 4.0
Ah. Good luck with that.
Creative commons tag.